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Space plasmas in the earth’s plasma sheet, in the solar wind and elsewhere often have
non-Maxwellian ion velocity distributions. The observed distribution functions contain a
plentiful supply of superthermal particles, i.e., particles that are faster than the thermal
speed. These are seen as high energy tails having a power-law dependence on velocity.

The simple pole expansion [1, 2, 3] of the distribution function is a sum of simple poles
in the complex velocity plane.

f(v) =
∑

i

ai

v − bi

, (1)

where f(v) is 1 over a truncated Taylor expansion of exp(v2/2) multiplied by a mask to
model a cutoff in the high energy tails

f(v) = M(v)T (v), M(v) =

[
1 +

v2

2
+ . . . +

1

m!
(
v2

2
)m

]−1

, T (v) =
[
1 + (

v

v0

)2n
]−1

. (2)

The distribution function can be a sum of terms of the type described by Eq. (2), and
functions of other forms can be used as long as f(v) can be written as a finite sum of
simple poles according to Eq. (1).

Following the Landau prescription when integrating in the complex plane the disper-
sion relation for a collisionless plasma with a distribution function described by a simple
pole expansion is

1 =
∑
α

ω2
pα

∫ ∞

−∞

fαdv

(ω − kv)2
= 2πi

∑
α

ω2
pα

∑
bαi∈U

aαi

(ω − kbαi)2
(3)

where α denotes particle species and U the upper half plane.
It can be shown that for a particle species whose distribution function is an even

function of v the Debye length satisfies the relation [2]

1

λ2
Dα

= −ω2
pα2πi

∑
bαi∈U

aαi

b2
αi

(4)

When bαi and aαi are the poles and residues of an expansion of the Maxwellian the Debye
length of Eq. (4) will approach the Debye length of the Maxwellian as m tends to infinity.
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Table 1: Debye length λDm according to Eq. (4) for expansions found in Eq. (2), for m =
1, 2, . . . 10, n = 0, are compared with the Debye length λD for a Maxwellian that has the same
second moment 〈v2〉 =

∑
b̃i∈U ãib̃

2
i as the expansion.

m 2 3 4 5 6 7 8 9 10
〈(v/vt)

2〉 2.828 1.376 1.137 1.059 1.027 1.013 1.006 1.003 1.002
λDm/λD 0.6436 0.8750 0.9469 0.9756 0.9884 0.9943 0.9972 0.9986 0.9993

A comparison between the Maxwellian Debye length and the Debye length for the
expansion of Eq. (2) is shown in table 1 for various values of m and n = 0. In the
calculation of λDm/λD the thermal velocity for the unapproximated Maxwellian is chosen
such that both distributions have the same second moment 〈v2〉 =

∑
bi∈U aib

2
i . For small

values of m, i.e., for distributions with an abundance of superthermal particles, the Debye
length is significantly smaller than the Debye length of the corresponding Maxwellian.
Similar results have been obtained for a kappa-distribution with a small value of kappa
[4, 5].

For ion acoustic waves the modulus of the phase velocity |ω/k| � |b̃ei|. Hence the
electron term of Eq. (3) is approximately−1/(k2λ2

De), and the dispersion relation becomes

1 = ω2
pi2πi

1

1 + 1
k2λ2

De

∑
bi∈U

ai

(ω − kbi)2
. (5)

If a Maxwellian velocity distribution is assumed for the electrons the Debye length λDe =
(ε0kBTe/n0q

2)1/2 that is associated with the Maxwellian can be used. However, when the
distribution function is non-Maxwellian but symmetric the Debye length given by Eq. (4)
is more appropriate. The dispersion relation can be written as a polynomial in ω/k for a
given k 6= 0.

∏
i

(
ω

k
− bi

)2

−
ω2

pi

k2

1

1 + 1
k2λ2

De

2πi
∑

i

ai

∏
j 6=i

(
ω

k
− bj

)2

= 0 (6)

where the notation bi, bj ∈ U , i.e., restriction to the upper half plane, has been omitted
in the summation and the products. The difference between Eq. (6) and Löfgren and
Gunell’s [1] Eq. (7)

∏
i

(
ω

k
− b̃i

)2

−
ω2

p

k2
2πi

∑
i

ãi

∏
j 6=i

(
ω

k
− b̃j

)2

= 0

is the appearance of the new factor 1/(1 + 1/k2λ2
De) in the second term on the left hand

side of Eq. (6) of this poster. The dispersion relation can be found from Eq. (6) by
polynomial root finders in standard numerical packages.
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Figure 1: Upper left panel: Expansions of the normalized Maxwellian for m = 2 and 5. The
ion thermal speed is vti = 0.2cs, where cs =

√
kBTe/mi.

Lower left panel: Root paths in the complex phase velocity space for these distribution functions.
Right panels: Dispersion relation for the ion acoustic wave travelling in the positive v direction.
The real part of ω is shown as a function of k in the upper panel. The lower panel shows the
imaginary part of ω as a function of k.

Ion acoustic waves

An expansion according to Eq. (2) is a good approximation of the Maxwellian at low
velocities, but shows increased tails at higher velocities, and can hence be a good ap-
proximation to plasmas containing superthermal particles. The normalized distribution
function f̃0(v) = f0(v)/n0 for m = 2 (dashed curves) and 5 (solid curves), n = 0, is
shown in the upper left panel of Fig. 1. T = 1 for n = 0 and there is no high velocity
cutoff in the tails. Root paths in the complex phase-velocity space for these distribution
functions, are shown in the lower left panel of Fig. 1. The long wavelength limits (k → 0)
are marked with stars. As k is increased from zero the roots follow the paths shown and
end at a pole of the distribution function as k tends to infinity. The poles are marked
with circles. The weakly damped modes are found close to the real axis, and for these
distribution functions they can be identified as the ion acoustic waves. For each of the
distributions there is one ion acoustic mode propagating in the direction of positive v
and one propagating in the direction of negative v. The dash-dotted lines starting at the
origin show the border between the weakly and heavily damped regions, with the weakly
damped region being below the lines. The criterion used for a wave mode being weakly
damped is that the imaginary part of ω shall be less than the real part divided by 2π,
i. e., =(ω)/|<(ω)| < 1/(2π). In the right panels of Fig. 1 the real (upper right panel)
and imaginary (lower right panel) parts of ω are shown as a function of k for the ion
acoustic mode travelling in the direction of positive v. The dispersion relations are shown
for distributions with m = 1, 2, 3, 4, and 5. Only for the Lorentzian (m = 1) is there any
significant deviation of the real part of ω from what a true Maxwellian would yield. In
the lower panel, however it is seen that superthermal particles contribute significantly to
the imaginary part of ω making the wave more damped for small values of m.
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Figure 2: (a) Distribution functions. (b) Root paths in the complex phase velocity space. (c, d)
<(ω) and (e, f) =(ω) as a function of k for the most important modes. The dispersion relations
for the fast modes are shown in panels (c) and (e), and the slow modes in panels (d) and (f).
The words slow and fast here refer to the phase speed in the long wavelength limit (k → 0),
which is marked with stars in (b).

Table 2: Parameters of the distribution functions shown in Fig. 2 The total ion plasma frequency
ωpi and the sound speed cs are used as scaling parameters. The background plasma has index
1 and the tail 2.
line ω2

pi,1 vti,1 vd,1 m1 ω2
pi,2 vti,2 vd,2 m2

— 0.97ω2
pi 0.15cs 0 5 0.03ω2

pi 0.4cs 0.35cs 2
- - 0.889ω2

pi 0.15cs 0 5 0.111ω2
pi 0.4cs 0.35cs 2

-.- 0.88ω2
pi 0.15cs 0 5 0.12ω2

pi 0.4cs 0.35cs 2

Distributions with beam-like tails

In Fig. 2 (a) three distributions with beam-like tails can be seen. A beam-like distribution
function is a distribution in which most of the ions belong to a population centred at zero
velocity and a fraction of the ions belong to an enhanced tail that can be modeled by an
expansion centred at non-zero velocity. Such ion distribution functions have been observed
in laboratory plasmas and have been found to carry both classic ion acoustic waves and
slow kinetic wave modes [6]. The relative density of the beam (or enhanced tail) shown
in Fig. 2 is η = ω2

pi,2/ω
2
pi = 0.03, 0.111, and 0.12 for the three curves respectively. The

two distributions with higher tail density are nearly identical. However, the dispersion
relations for η = 0.11 and η = 0.12 are distinctly different, as Fig. 2 (b) shows. As
the relative tail density increases from 0.111 to 0.12 a topological shift occurs, and the
ion acoustic mode that for low tail density is connected to a pole of the bulk plasma
distribution in stead connects to one of the poles of the tail. For the most important
modes travelling in the positive direction ω as a function of k is shown in Fig. 2 (c–f).

All modes shown in Fig. 2 have a constant phase velocity for small k and are hence
acoustic-like in their behaviour. Only the traditional ion acoustic mode is weakly damped
in the case with the lowest tail density. As the tail density is increased this mode will
be weakly damped at small k, strongly damped at intermediate values of k, and have
another weakly damped region for larger k. Linear kinetic wave modes differing from the
traditional ion acoustic waves have been observed in laboratory experiments [6].
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Figure 3: Upper left panel: m = 5 expansion of a Maxwellian with Ti = Te (solid line) and
the same function with a gentle cutoff introduced at v = 2cs. Lower left panel: Root paths in
the complex phase velocity space for these distributions. The poles of the distribution functions
are marked with circles and the limiting solutions k → 0 are marked with stars. Wave modes
below the dash-dotted lines in the lower panels fulfill the condition =(ω)/|<(ω)| < 1/(2π) and
are considered to be weakly damped.
Right panels: Dispersion relation for the least damped acoustic wave travelling in the positive
v direction. The real part of ω is shown as a function of k in the upper panel. The lower panel
shows the imaginary part of ω as a function of k.

Distributions with cutoffs in the high energy tails

A cutoff in the tail of the distribution can be introduced by setting n 6= 0 in Eq. (2). This
is equivalent to a multiplication of the expansion with the transfer function of a low-pass
Butterworth filter. In Fig. 3 an example of the introduction of a gentle cutoff is shown.
In the upper left panel the solid line shows an m = 5, n = 0 expansion of a Maxwellian
distribution function with Ti = Te. The dashed line shows an m = 5, n = 5 expansion,
i.e., the same distribution multiplied by T (v) = (1 + (v/vc)

10)−1, which is the square of
the modulus of the transfer function for a fifth order Butterworth low-pass filter. Here vc

is the cutoff velocity which in the example shown is 2cs. This distribution has less ions
in the high energy tails. Such a distribution function could be produced in the presence
of neutral gas, since the collision frequency for charge-exchange collisions increases with
energy. Root paths in the complex phase velocity space for these two distribution functions
are shown in the lower left panel of Fig. 3. As expected the Maxwellian plasma with
Ti = Te (solid lines) has only heavily damped modes. For the distribution with the cutoff
tails (dashed lines) there is a weakly damped mode with a phase velocity close to 2.1cs,
which is slightly faster than the cutoff velocity vc = 2cs. This mode is an acoustic-like
mode since, as can be seen in Fig. 3, it has an approximately constant phase speed in
the k → 0 limit, which is marked with a star, and hence ω is proportional to k in that
limit. It is not, however, a traditional ion acoustic wave as its phase speed is twice the
ion sound speed. The introduction of a cutoff decreases the damping at velocities above
the cutoff since both the slope of the distribution function and the number of particles
in that velocity range decreases when the cutoff is introduced, and Landau damping is
proportional to the slope of the distribution function in the neighbourhood of the phase
velocity.
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Figure 4: (a–c) Normalized distribution functions. (d–f) Root paths in the complex phase
velocity space. Wave modes below the dashed lines in the lower panels fulfill the condition
=(ω)/|<(ω)| < 1/(2π) and are hence weakly damped. When f = nh/ni = 0.1 (a,d) the only
weakly damped mode is the cold ion acoustic wave. For f = nh/ni = 0.35 (b,e) the hot
ion acoustic wave is weakly damped, and so is the slow (cold) wave for high values of k. At
f = nh/ni = 0.6 the slow wave is heavily damped for all k and the hot acoustic wave is weakly
damped. In the three cases shown in (a–f) mc = 5, vtc = 0.1cs, mh = 3, and vth = 0.4cs.
Panels (g–j) show the same thing for distributions where Te = Ti for the hot component. The
parameters are f = 0.9, vtc = 0.1cs, vth = cs (g,i) and f = 0.6, vtc = 0.2cs, vth = cs (h,j).

Two-temperature distributions

In a plasma with two ion populations with different temperature weakly damped modes
similar to those found in plasmas with beam-like tails exist under some conditions. The
different kinds of wave modes that can exist are shown in Fig. 4 (a–f). In the example
shown mc = 5, vtc = 0.1cs, mh = 3, and vth = 0.4cs. For low f = nh/ni the plasma ions
are mostly cold and the cold ion acoustic wave is the only weakly damped wave mode
(Fig. 4 (d)). The dashed lines in Fig. 4 (d–f) are the =(ω)/|<(ω)| = 1/(2π) lines, that
form the border between the weakly and strongly damped regions. Wave modes below the
dashed lines are weakly damped. For high f values the dominant wave mode is the ion
acoustic wave associated with the hot ion component (Fig. 4 (f)), and for intermediate
values of f both the hot and cold waves can be weakly damped (Fig. 4 (e)). The cold
wave is strongly damped for small and very large k. For moderately large k there is a
regime where a slow weakly damped wave exists.

If the hot ion component is so hot that Te = Ti there can still be weakly damped
modes if a cold ion component is present, and even if that component constitutes only a
small fraction of the total ion density. In Fig. 4 (g–j) two examples of this are shown. The
three uppermost poles shown in the lower panels are the poles of the hot component of
the distribution, for which vth = cs, and hence Te = Ti. The wave modes whose root paths
connect to the poles of the hot distribution in the k →∞ limit are all heavily damped, as
would be expected for waves in a plasma with equal electron and ion temperatures. In the
presence of a cold plasma component there is a slow weakly damped acoustic wave mode.
Its phase speed is lower than the ion sound speed. The slow wave is weakly damped even
when the cold ion component only contributes to 10% of the total ion density.
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Figure 5: The existence of weakly damped modes for different hot ion temperatures. In the
shadowed regions weakly damped (=(ω)/<(ω) < 1/(2π)) modes exist. In panels (a–e) the cold
ions follow a vtc = 0.1cs, mc = 5 expansion, and the hot ions have mh = 3, i.e., a distribution
with some superthermal particles. The hot ion thermal speed vth/cs = 0.2, 0.4, 0.6, 0.8, and 1.0
respectively.
In panels (f–i) the cold ions follow a vtc = 0.03cs, mc = 5 expansion, and the hot ions have
vth = 0.3. The number of superthermal particles decreases as mh increases. In the four panels
mh = 1, 2, 3, and 4 from (f) to (i).

Various parameters of two-temperature plasmas have been investigated to find param-
eter regimes where weakly damped modes can exist. Fig. 5 (a–e) shows where weakly
damped mode exist for a plasma with a cold ion component (vtc = 0.1cs) and a hot com-
ponent with thermal speeds vth/cs = 0.2, 0.4, 0.6, 0.8, and 1.0 respectively. The diagrams
shown in Fig. 5 have been obtained by numerically solving Eq. (5) and applying the
weak damping condition =(ω) < <(ω)/(2π). In the shadowed regions at least one mode
is weakly damped. The shadowed region withdraws from the lower right quadrant of the
diagrams as we go from panel (a) to panel (c). This means that as the hot temperature
increases the ion acoustic wave associated with the hot ion component gets more damped.
Instead a shadow emerges from the upper left corner. This is the slow wave associated
with the cold ions, which is weakly damped when vth approaches cs. The influence of su-
perthermal particles is shown in Fig. 5 (f–i). The cold ions follow a vtc = 0.03cs, mc = 5
expansion, and the hot ions have vth = 0.3cs. The four panels correspond to mh = 1, 2, 3,
and 4 from (f) to (i). When mh is increased from 1 to 4 the number of superthermal
particles decreases and the damping of the ion acoustic mode decreases. This is seen
in Fig. 5 (f–i) where the shadowed region fills more and more of the lower half of this
diagrams as we go from (f) to (i), i. e, towards a lower number of superthermal particles.
The existence of a slow mode associated with the cold component is not affected to any
great extent of the presence of superthermal particles in the hot ion component.
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Figure 6: A two-temperature ion distribution function (a), and root paths in the complex phase
velocity space (b, c). <(ω) (d, e) and =(ω) (f, g) as functions of k for εZ = 0.5, ω2

pd = 0.01ω2
pi ·εZ.

Panel (c) shows the dust acoustic wave on a larger scale. Panels (d–g) show εZ = 0, 0.5, and 1.

Waves in dusty plasmas

The simple pole expansion can also be used to study waves in collisionless dusty plasmas.
Assuming that the dust is cold and the electrons are hot (|bdi| � |ω/k| � |bei|) Eq. (3)
can be simplified to

1 =
ω2

pd

ω2
− 1

k2λ2
De

+ ω2
pi2πi

∑
bii∈U

aii

(ω − kbii)2
. (7)

Assuming singly charged positive ions, and negatively charge dust, εZ is the fraction
of the negative charge that resides on the dust grains when ε = nd/ni is the dust to
ion density ratio and −Ze is the dust grain charge. Hence ne = (1 − εZ)ni, ω2

pd =

ω2
pi (mi/ (mdε)) (εZ)2, and λ2

De = λ2
DiTe/ (Ti (1− eZ)).

In Fig. 6 (b, c) the dispersion relation is shown for εZ = 0.5, ω2
pd = 0.01ω2

pi · εZ. The
two components of the ion distribution have vti1 = vti, ω2

pi1 = 0.81ω2
pi, and vti2 = 4vti,

ω2
pi2 = 0.19ω2

pi respectively. As half of the negative charge is confined to the cold dust
grains the electrons can not shield the ions as effectively as they do in the absence of
dust. This makes the dust ion acoustic wave faster than the ion acoustic wave. If all
the negative charge is on the dust grains and there are no free electrons the phase speed
of the dust ion acoustic wave will tend to infinity as k → 0, and the dust ion acoustic
wave will then be analogous with an electron wave in a two electron temperature plasma,
where electrons correspond to the ions in the dust ion acoustic waves, and the ions of the
electron wave correspond to the heavy dust grains of the dust ion acoustic wave. That is
to say the particles of the heaviest species do nothing else than provide a background of
neutralising charge.

When the dust grains are included in this way effects of the dust velocity distribution
and dust charging processes are not taken into account. The dispersion relations for the
dust acoustic wave could hence be inaccurate. The results for the dust ion acoustic wave
are still valid, because their frequency is much higher than the dust plasma frequency.
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Summary

• Using a simple pole expansion we have calculated λD for f(v), symmetric around
v = 0, and derived an equation for the dispersion relation for waves on an ion
acoustic time scale (|ω/k| � vte).

• Slow (vph < cs) weakly damped acoustic-like waves are found for

– Two-component distributions with beam-like tails

– Two-component two-temperature distributions

• This happens even when Te = Ti.

• For one component distribution functions with Te = Ti weakly damped modes are
found when a cutoff appears in the tails. Its phase velocity is close to the cutoff
velocity.

• In a classic ion acoustic wave the electrons provide shielding for the ions. In a
two ion temperature plasma the hot ions assume the role of the electrons, shielding
the cold ions, and hence a slow weakly damped acoustic-like wave can exist. The
damping decreases further if the hot ions have a non-zero mean velocity (beam-like
tails). Similar modes appear in plasmas with two ion species, and in plasmas with
two electron temperatures.

• These weakly damped wave modes have been found in laboratory experiments and
are likely to occur in space plasmas, where distributions of this kind are common.

• The simple pole expansion can also be used to study waves in dusty plasmas.

References
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