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I. INTRODUCTION

Electrostatic fluctuations appear in plasmas due to the
discreteness of the plasma particles. A method for cal-
culation of the spectral density of such fluctuations by
superposition of dressed test particles was developed in
the early 1960s1,2. This approach has been extended
to treat electromagnetic fluctuations in order to study
scattering of microwaves from such fluctuations in fusion
plasma experiments3. Density fluctuations in the iono-
sphere have been measured by scattering of microwaves
from ground-based radars4. However, the observed fluc-
tuations are caused by turbulence rather than by particle
discreteness. The thermal fluctuations are likely to be
much smaller than the turbulent fluctuations.

Mace, Hellberg, and Treumann used the dressed
test particle method to calculate the spectral den-
sity for electrostatic fluctuations in an isotropic three-
dimensional plasma where the particles followed a kappa
distribution5. They showed that the presence of super-
thermal particles can significantly alter the excitation
of the fluctuations. In the presence of super-thermals
the Debye length is smaller than the Debye length of
a Maxwellian plasma, and hence the plasma parameter
g = 1/(nλ3

D) is larger in the presence of super-thermals.
Effects that are due to particle discreteness increase with
g, and hence such effects, like fluctuations, will be more
important in plasmas with super-thermal particles, where
there are fewer particles in the Debye sphere compared
with Maxwellian plasmas.

In this paper we will use simple pole expansions to
study electrostatic fluctuations in plasmas. The simple
pole expansion6 of the distribution function is a sum of
simple poles in the complex phase velocity plane

f(v) =
∑
i

ai
v − bi

. (1)

The integral along the real axis in the dispersion rela-
tion reduces to a sum of the residues ai at the poles bi,
and finding the dispersion relations amounts to solving
ε(k, ω) = 0, where the dielectric function ε(k, ω) is given
by Eq. (12) below. This method has been used to study
dispersion relations for electron6 and ion7 waves. It has
been shown that the simple pole expansion of the dis-

tribution function is equivalent to a Padé approximation
of the plasma dispersion function8. The Debye length
for particle species α with an even distribution function
fα(v), described by a simple pole distribution is7

λDα =

−ω2
pα2πi

∑
bi,α∈U

ai,α
b2i,α

−1/2

, (2)

where U denotes the upper half plane. The total Debye
length is given by λD =

(∑
α λ
−2
Dα

)−1/2
.

In this paper we will use simple pole distributions to
study electrostatic fluctuations in plasmas. Specifically
we will use distribution functions that can be written as
sums of expansions of the Maxwellian6

f(x) = M(x), x ≡ (v − vd)/vt (3)

M(x) =
[
1 +

x2

2
+ . . .+

1
m!

(
x2

2

)m]−1

,

where M is 1 over a truncated Taylor expansion of ex
2/2,

vd is the average drift velocity and vt is the standard
deviation of the limiting Maxwellian. The number of
poles in the upper half plane is m, which does not denote
the particle mass. As m tends to infinity M approaches
the Maxwellian. For finite values of m the simple pole
expansion has tails that are thicker than the Maxwellian
tails, and the number of super-thermal particles increases
with lower m.

This paper is organized as follows. In section II
expressions for the spectral density of the electric
field and the particle density are derived for isotropic
three-dimensional distribution functions, where the one-
dimensional projection of the distribution function is
modelled by a simple pole expansion. To facilitate a
comparison with measurements spectral densities inte-
grated over wavenumber are also given, and numerical
examples are presented. In section III the spectral den-
sities are given for a one-dimensional plasma where the
one-dimensional distribution function is modelled by a
simple pole expansion. In section IV fluctuations in plas-
mas having two ion temperatures are studied. In section
V the results are summarized.
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II. ELECTROSTATIC FLUCTUATIONS IN AN
ISOTROPIC THREE-DIMENSIONAL

UNMAGNETIZED PLASMA

A. E-field

A detailed description of the calculation of the spec-
tral density of electrostatic fluctuations in an isotropic
three-dimensional plasma through superposition of the
electric fields of dressed test particles can be found in
the book by Krall and Trivelpiece9, or in the paper by
Mace, Hellberg, and Treumann5. Here only the result is
stated, and it is shown how fluctuation spectral densities
can be calculated for distribution functions modelled by
simple pole expansions.

The spectral density S(k, ω) of the electric field fluc-
tuations is a function, which integrated over all frequen-
cies and wavenumbers yields the energy density 1

2ε0
〈
E2
〉

of the fluctuating electric field. In a general three-
dimensional plasma the relation between S(k, ω) and
1
2ε0
〈
E2
〉

is

1
2
ε0
〈
E2
〉

=
∫∫∫∫

S(k, ω)
d3k

(2π)3

dω

2π
. (4)

The spectral density of the electric field fluctuations is

S(k, ω) =
∑
α

πnαq
2
α

ε0

F
(0)
α (ω/k)

k3|ε(k, ω)|2
, (5)

where nα is the density and qα the charge of the particles
of species α, ε(k, ω) is the dielectric function. F (0)

α (u), the
one-dimensional projection of the distribution function
on an axis parallel to k, is defined by

F (0)
α (u) =

∫∫∫
δ

(
u− k · v′

k

)
f (0)
α (v′) d3v′ (6)

The dielectric function ε(k, ω) is given by

ε(k, ω) = 1 +
∑
α

ω2
pα

k2

∫∫∫
k · ∂f (0)

α (v)/∂v
ω − k · v

d3v (7)

Both k and ω are real-valued quantities. ω = k ·v′ is the
frequency of resonance between a dressed test particle
moving with velocity v′ and a wave with wavenumber k.

Since the ε(k, ω) is dependent only on the compo-
nent of the particle velocity that is parallel to k we can
integrate over the perpendicular components. For the
isotropic three-dimensional plasma the spectral density
and the dielectric function will be simplified to functions
of the scalar variables ω and k = |k|, and are given by

S(k, ω) =
∑
α

πnαq
2
α

ε0

F
(0)
α (ω/k)

k3|ε(k, ω)|2
. (8)

and

ε(k, ω) = 1 +
∑
α

ω2
pα

k2

∫
kdF

(0)
α (u)/du
ω − ku

du (9)

instead of equations (5) and (7). Equation (9) follows
from Eq. (7) and the fact that k · ∂f (0)

α (v)/∂v is k

times the derivative of f (0)
α (v) in the direction in veloc-

ity space given by k, and k · v in the denominator is k
times the velocity component in that direction9. In the
isotropic three-dimensional plasma the energy density is
then given by the integral

1
2
ε0
〈
E2
〉

=
1

4π3

∫∫
k2S(k, ω) dk dω. (10)

We will use simple pole expansions of the one-
dimensional distribution function

F (0)
α (ω/k) =

∑
i

ai,α
ω/k − bi,α

. (11)

Previously6–8 the simple pole distributions have been
used to find dispersion relations by assuming a real-
valued wavenumber k, and solving ε(k, ω) = 0 for so-
lutions with a complex ω. Here both k and ω are real
and instead of solving ε(k, ω) = 0 we calculate the value
of ε(k, ω). As in the previous work this is done by closing
the path of integration in the upper half plane, and using
the residue theorem. The dielectric function is then

ε(k, ω) = 1− 2πi
∑
α

ω2
pα

∑
bi,α∈U

ai,α
(ω − kbi,α)2

. (12)

The spectral density S(k, ω) follows by inserting (11) and
(12) in (8):

S(k, ω) =

∑
α
πnαq

2
α

ε0

∑
i

ai,α
ω/k−bi,α

k3
∣∣∣1− 2πi

∑
α ω

2
pα

∑
bi,α∈U

ai,α
(ω−kbi,α)2

∣∣∣2 .
(13)

To be able to compare the theory to measurements at
one point in space the spectral density is integrated over
all wavenumbers giving the energy density as a function
of frequency only:

PEE(ω) =
∫∫∫

S(k, ω)
d3k

(2π)3
(14)

=
1

2π2

∫
k2S(k, ω) dk

=
∫ 1

2π

∑
α
nαq

2
α

ε0

∑
i

ai,α
ω/k−bi,α

k
∣∣∣1− 2πi

∑
α ω

2
pα

∑
bi,α∈U

ai,α
(ω−kbi,α)2

∣∣∣2 dk
The logarithm of the spectral density

ln
(
S(k, ω)/(mev

2
te/ωpe)

)
for a plasma where both

the electron and ion distributions are modelled by m = 2
expansions is shown in Fig. 1. The ratio between the
electron and ion temperatures Te/Ti = 100 and the
ratio between ion and electron masses mi/me = 1836.
As expected the result is similar to that obtained by
Mace, Hellberg, and Treumann5. The Langmuir and ion
acoustic branches of the dispersion relations are clearly
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FIG. 1: The logarithm of the spectral density
ln
(
S(k, ω)/(mev

2
te/ωpe)

)
for a plasma where both the

electron and ion distributions are modelled by m = 2
expansions. The other parameters are Te/Ti = 100 and
mi/me = 1836. The peak at ω = ωpe is not resolved.

seen in Fig. 1. This is because |ε(k, ω)|2 appears in
the denominator of Eq. (8), and although ε(k, ω) never
is equal to zero in a stable plasma it is small in the
neighbourhood of the normal modes. The excitation of
fluctuation depends both on the dispersion relation, and
on the availability of particles at phase velocities close
to the normal modes. That is to say that fluctuations
appear if the distribution function F (ω/k) is not small
for such k and ω where ε(k, ω) is. The narrow peak in the
fluctuation spectrum at the electron plasma frequency
is not resolved in Fig. 1. The peak is so narrow that it
falls between the grid points where S(k, ω) is calculated.

After numerical integration with respect to k from
kλDe = 0.001 to kλDe = 1 the resulting PEE(ω) is shown
in Fig. 2. The integral is not evaluated from k = 0
to k = ∞ because in any real situation there are both
lower and upper limits on k. In a laboratory experiment
the lower limit on k is reached when the wavelength ap-
proaches the size of the experimental device. Any probe
or optical measurement will constitute an average over a
small volume, and the upper k limit is reached when the
wavelength is comparable with the length of that volume.
The narrow peak at the electron plasma frequency is not
resolved in Fig. 2, and it is in reality much higher. The
solid curve in Fig. 2 corresponds to a plasma with m = 2
distributions for both the electrons and the ions, for the
dashed curve m = 3 and for the dash-dotted curve m = 5
for both electrons and ions. All other parameters are the
same as for the plasma in Fig. 1. For a plasma with more
super-thermal particles (lower m) the peak around ωpe is
broadened, since the excitation of fluctuations near the
Langmuir branch increases due to the increased presence
of resonant particles. Around the ion plasma frequency

FIG. 2: PEE(ω) is the integral with respect to k of S(k, ω)
for a plasma where both the electron and ion distributions are
modelled by m = 2 expansions (solid line), m = 3 expansions
(dashed line), and m = 5 expansions (dash-dotted line). The
other parameters are Te/Ti = 100 and mi/me = 1836. The
peak at ω = ωpe is not resolved. The spectral density is
integrated from kλDe = 0.001 to kλDe = 1.

(ωpi ≈ 2 × 10−2ωpe) the fluctuation level decreases with
an increased number of super-thermals, because of the in-
creased damping of the ion acoustic branch in this case.

B. Density

The relation between the perturbed density and the
electric field is derived in appendix A. It has been as-
sumed that the electrostatic potential is a slowly vary-
ing quantity (ω � ωpe) so that the electrons have time
to move, adjusting there density and maintaining quasi-
neutrality. We are hence looking only at ion density fluc-
tuations. For frequencies on the electron time scale the
ions will not have time to move, and then the relevant
density would be the electron density. For experimen-
tal purposes, the ion density is more interesting since it
can be measured with probe or laser induced fluorescence
techniques. Electron density measurements at frequen-
cies on the order of the electron plasma frequency are
extremely difficult to perform with wire probes. The re-
lation between the perturbed density and the electric field
is

n1 = −i ε0
e

1
k

(
k2 +

1
λ2
De

)
E
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FIG. 3: The logarithm of the density spectral density
ln
(
Q(k, ω)λ3

Deωpe
)
. The plasma parameters are the same as

in Fig. 1.

(see appendix A), and the average square of the density
fluctuations is〈

n2
1

〉
=

〈
ε20
e2

1
k2

(
k2 +

1
λ2
De

)2

E2

〉
(15)

=
∫∫∫∫

Q(k, ω)
d3k

(2π)3

dω

2π
,

where

Q(k, ω) =
2ε0
e2

1
k2

(
k2 +

1
λ2
De

)2

S(k, ω), (16)

is the spectral density of the density fluctuations. After
integration with respect to k we have the density fluctu-
ation frequency spectrum Pnn(ω).

Pnn(ω) =
∫∫∫

Q(k, ω)
d3k

(2π)3
(17)

=
1

2π2

∫
k2Q(k, ω) dk

=
ε0
π2e2

∫ (
k2 +

1
λ2
De

)2

S(k, ω) dk

The spectral density Q(ω, k) of the density fluctuations
is shown in Fig. 3 and the frequency spectrum Pnn(ω)
is shown in Fig. 4. The parameters are the same as
for the E-field spectra shown in figures 1 and 2, i. e.,
Te/Ti = 100, mi/me = 1836, and both the electron and
ion distributions are modelled by m = 2 expansions (solid
curve), m = 3 (dashed curve), and m = 5 (dash-dotted
curve). As for the electric field fluctuations, described in
section II A, the fluctuation levels near the ion acoustic
branch are lower for plasmas with more super-thermals
(lower m) due to increased damping.

FIG. 4: Pnn(ω) is the integral of Q(k, ω) shown in Fig.3. The
plasma parameters are the same as in figures 1 and 2. The
solid curve shows Pnn(ω) for a plasma with m = 2 expansions
for both electrons and ions, the dashed curve m = 3, and the
dash-dotted curve m = 5.

III. FLUCTUATIONS IN A
ONE-DIMENSIONAL PLASMA

The development of the theory of fluctuations in
a one-dimensional plasma is analogous to that of a
three-dimensional plasma. The differences between the
one- and three-dimensional cases are that in the one-
dimensional case all integrals over k- or x-space are one-
dimensional, the density n is replaced by n

(1D)
α which is

a line-density interpreted as the number of particles of
kind α per metre. The particle charge qα is replaced
by a particle surface charge ρS,α in the one-dimensional
theory.

A. E-field

In a one-dimensional plasma the energy of the electric
field fluctuations 1

2ε0
〈
E2
〉

is given by an integral over
all frequencies and wavenumbers of the one-dimensional
spectral density S(1D)(k, ω),

1
2
ε0
〈
E2
〉

=
1

4π2

∫∫
S(1D)(k, ω) dk dω. (18)

The spectral density of the one-dimensional electric field
fluctuations is given by

S(1D)(k, ω) =
∑
α

πn
(1D)
α ρ2

S,α

ε0

F
(0)
α (ω/k)

k3|ε(k, ω)|2
, (19)

where the dielectric function is

ε(k, ω) = 1− 2πi
∑
α

ω2
pα

∑
bi,α∈U

ai,α
(ω − kbi,α)2

.
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as given by Eq. (12). The poles, bi,α, and the residues
ai,α are the poles and residues of the one dimensional
distribution function F

(0)
α (v).

After integration of Eq. (19) over k the one dimen-
sional frequency spectrum is obtained

P
(1D)
EE (ω) =

∫
S(1D)(k, ω)

dk

2π
(20)

=
1
2

∫ ∑
α

n(1D)
α ρ2

S,α

ε0

∑
i

ai,α
ω/k−bi,α

k3
∣∣∣1− 2πi

∑
α ω

2
pα

∑
bi,α∈U

ai,α
(ω−kbi,α)2

∣∣∣2 dk.

B. Density

From the relation between perturbed ion density and
electric field (Eq. (A7)) we can calculate the average
square of the density fluctuations for low frequencies
(ω � ωpe)〈(

n
(1D)
1

)2
〉

=

〈
ε20
e2

1
k2

(
k2 +

1
λ2
De

)2

E2

〉
(21)

=
∫∫

Q(1D)(k, ω)
dk

2π
dω

2π
,

where the spectral density of the one-dimensional density
fluctuations is

Q(1D)(k, ω) =
2ε0
e2

1
k2

(
k2 +

1
λ2
De

)2

S(1D)(k, ω). (22)

After integration with respect to k we have the
one-dimensional density fluctuation frequency spectrum
P

(1D)
nn (ω).

P (1D)
nn (ω) =

∫
Q(1D)(k, ω)

dk

2π
(23)

=
ε0
πe2

∫
1
k2

(
k2 +

1
λ2
De

)2

S(1D)(k, ω) dk

For three-dimensional isotropic distribution functions
S(k, ω) and Q(k, ω) are numerically the same as in the
corresponding one-dimensional case. Hence S(1D)(k, ω)
andQ(1D)(k, ω) for a plasma with the same parameters as
in figures 1 and 3 will look exactly as S(k, ω) and Q(k, ω)
that are shown in those figures. The spectral densities
integrated over k, P (1D)

EE (ω) and Pnn(ω) are not the same
in the one- and three-dimensional cases. For the parame-
ters considered so far, i. e., Te/Ti = 100, mi/me = 1836,
P

(1D)
EE (ω) is shown in Fig. 5 and P (1D)

nn (ω) is shown in Fig.
6. The lower limit of integration is kλDe = 0.001 and the
upper is kλDe = 1. In figures 5 and 6 the solid lines
show a case where both the electron and ion distribu-
tions are modelled by m = 2 expansions. The dashed and
dash-dotted lines show distributions modelled by m = 3
and m = 5 expansions respectively. Like the isotropic

FIG. 5: P
(1D)
EE (ω) is the integral with respect to k of

S(1D)(k, ω) for a plasma where both the electron and ion dis-
tributions are modelled by m = 2 expansions (solid line),
m = 3 expansions (dashed line), and m = 5 expansions (dash-
dotted line). The other parameters are Te/Ti = 100 and
mi/me = 1836. The peak at ω = ωpe is not resolved. The
spectral density is integrated from kλDe = 0.001 to kλDe = 1.

FIG. 6: P
(1D)
nn (ω) is the integral of Q(1D)(k, ω) for a plasma

where both the electron and ion distributions are modelled
by m = 2 expansions (solid line), m = 3 expansions (dashed
line), and m = 5 expansions (dash-dotted line). The other
parameters are Te/Ti = 100 and mi/me = 1836. The peak
at ω = ωpe is not resolved. The spectral density is integrated
from kλDe = 0.001 to kλDe = 1.

three-dimensional plasma the peak at ωpe in the one-
dimensional plasma is broader for lower values of m when
there are more super-thermal particles, and the fluctua-
tion levels at ion acoustic frequencies are lower for lower
m-values.

In the three-dimensional case the slopes of the fre-
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quency spectra in the ion acoustic frequency range are
steeper, by two orders of magnitude, than in the one-
dimensional case. This applies to both the density and
the electric field spectra. It is perhaps more evident in the
density spectrum shown in Fig. 6, where the spectrum
is nearly flat across the whole ion acoustic range. The
reason for the difference in slope is the k2 factor in the in-
tegrand of the three-dimensional frequency spectra (Eq.
(14) and Eq. (17)) and not in the one-dimensional spec-
tra (Eq. (20) and Eq. (23)). Hence relatively less weight
is given to the low k region in the three-dimensional than
in the one-dimensional plasma, and since ω is propor-
tional to k for an acoustic wave, and the fluctuating en-
ergy concentrated near the normal modes, the fluctuation
level rises faster with k in the three-dimensional case.

In the presence of a magnetic field the particle mo-
tion is restricted to the direction along the magnetic
field lines. Hence the plasma in such cases could effec-
tively be one-dimensional. A measurement of the slope of
the fluctuation spectrum could then determine whether
the fluctuations are one- or three dimensional, and hence
whether assuming a one-dimensional plasma is a good ap-
proximation. One should keep in mind, however, that the
present theory does not include any effects of the mag-
netic field other than the possible one-dimensionality, and
that cyclotron resonances are not accounted for.

The sharp cutoff in P
(1D)
nn (ω) at ω ≈ 3 × 10−5ωpe ap-

pears where the ion acoustic branch of the dispersion re-
lation crosses the lower limit of integration kλDe = 0.001.
Similarly the sharp decrease in fluctuation levels above
the ωpi is influenced by the upper limit of integration
kλDe = 1.

IV. FLUCTUATIONS FOR DISTRIBUTIONS
WITH TWO ION TEMPERATURES

Weakly damped acoustic-like modes with a phase
speed lower than the ion sound speed can exist in plas-
mas where the ion distribution consists of two compo-
nents that have different temperatures.7 The quantity
that is important for the dispersion relations is the ther-
mal speed of the components, and similar modes occur
in plasmas with two ion species.10 In plasmas with two
electron temperatures electron acoustic waves appear for
the same reason.11–13 Since high level fluctuations occur
in the vicinity of the normal modes these acoustic-like
modes affect the fluctuation spectra of plasmas with two
ion temperatures.

In Fig. 7 the spectral density S(k, ω) of the fluctuating
electric field is shown for two cases of plasmas with two-
temperature ion distributions. The electrons are mod-
elled by an m = 3 expansion and the ion to electron
mass ratio is 1836. The ion distribution is composed
of a cold component with a temperature Ti,c = 0.01Te
and a hot component with a temperature Ti,h = 0.16Te.
The parameters are shown in table I which also includes
a case with nh/ni = 0.35. In the upper panel of Fig.

FIG. 7: Electric field fluctuations in a two-ion-temperature
plasma. The upper panel shows the case where nh/ni = 0.1,
and in the lower panel nh/ni = 0.6. Other parameters are
shown in table I. The ion acoustic branch is broader than
in the case of a one-component distribution, and in the lower
panel where there are more hot ions the two ion modes can
be seen. The peak at ωpe is not resolved.

TABLE I: Parameters of the distribution functions for the
plasmas that have their fluctuations shown in Fig. 7 and 9.
The notation mi1,mi2, and me refers to the number of terms
in the expansion and not the particle masses.

ω2
pi,1 vti,1 mi1 ω2

pi,2 vti,2 mi2 ω2
pe vte me

0.9ω2
pi 0.1cs 5 0.1ω2

pi 0.4cs 3 1836ω2
pe

√
1836cs 3

0.65ω2
pi 0.1cs 5 0.35ω2

pi 0.4cs 3 1836ω2
pe

√
1836cs 3

0.4ω2
pi 0.1cs 5 0.6ω2

pi 0.4cs 3 1836ω2
pe

√
1836cs 3
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FIG. 8: Dispersion relations, for the three least damped
modes, i. e. the Langmuir wave, the classical ion acoustic
wave, and the slow acoustic-like wave. The left panel shows
the nh/ni = 0.1 case and the right panel the nh/ni = 0.6
case.

7 nh/ni = 0.1, i. e. 10% of the ions belong to the
hot distribution. The ion acoustic branch of the fluc-
tuation spectral density is broader than in the case of
a one-component ion distribution. In this case the slow
waves are heavily damped.7 The lower panel of Fig. 7
shows a case where nh/ni = 0.6. Here the ion acoustic
branch is even wider than in the upper panel, and the
two modes are seen more clearly. The dispersion rela-
tions for the three least damped modes are shown in Fig.
8 for the same two cases that are shown in Fig. 7. The
Langmuir wave is in the upper part of the figures. The
slow acoustic-like wave is the lower of the two parallel
curves in the lower part of the figures. The dispersion
relations shown are the real part of ω as a function of
k calculated according to Löfgren and Gunell6 for the
Langmuir branch, and according to Gunell and Skiff7 for
the two ion modes. The one-dimensional density fluctua-
tion frequency spectrum P

(1D)
nn (ω) is shown in Fig. 9 for

nh/ni = 0.1 (solid curve), nh/ni = 0.35, (dashed curve),
and nh/ni = 0.6 (dash-dotted curve). The fluctuation
levels for the ion acoustic frequencies are lower in the
cases with a higher relative hot ion density, because of
the increased damping.7 The cutoff at ω ≈ 2× 10−5ωpe,
that occurs when the ion acoustic mode enter the interval
of integration at low k becomes less abrupt with increas-
ing nh/ni because the spectral density is broader in k
and ω due to the presence of the two modes.

The two-component distribution functions studied in
this paper have both components centred at the same
velocity. If one component is given a non-zero centre
velocity, for example the hot low density component of
the two-temperature distributions in this section, the
damping rate can be reduced for the ion acoustic and
ion acoustic-like waves. This will affect the fluctuations
leading to more intense fluctuations in the ion acoustic
frequency range.

FIG. 9: One-dimensional density fluctuations integrated from
k = 0.001 to k = 1 for three different cases, two of which (solid

and dash-dotted lines) have their spectral density S(1D)(k, ω)
shown in Fig. 7. The dashed line shows a case where nh/ni =
0.35. Other parameters are shown in table I.

V. SUMMARY AND CONCLUSIONS

Electrostatic fluctuations occur in plasmas due to the
discreteness of the plasma particles. Most of the energy
of the fluctuations can be found in the vicinity of the nor-
mal modes in phase velocity space. Fluctuations further
away from the normal modes are heavily damped and
cannot propagate in the plasma. The particle distribu-
tion functions affect the normal modes and the damping
of these modes. The distribution functions also affect
the fluctuation spectrum in a more direct way, through
the particle density in velocity space close to the normal
modes. To have a high level of fluctuations in a region
of velocity space there must be particles present that can
excite a normal mode.

In this paper it is shown how the spectral density of
these fluctuations can be calculated for non-Maxwellian
plasmas whose distribution functions can be modelled
by a simple pole distribution. This is done for one-
dimensional and for isotropic three-dimensional plasmas.
In the three-dimensional case a simple pole expansion
is used to model the one-dimensional projection of the
isotropic three-dimensional distribution function on an
axis parallel to k. The results for distributions with
super-thermal particles are in agreement with the results
obtained for kappa distributions,5 that, for low κ-values
also contain super-thermals.

For comparison with measurements made at one point
in space it is interesting to integrate with respect to
wavenumber and calculate the spectrum as a function
of frequency. It is found that the slope of the fre-
quency spectrum in the ion acoustic frequency range
differs between the 1D and 3D cases by two orders
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of magnitude, being steeper in the three-dimensional
case. This observation could be used to determine
whether the fluctuations are predominantly one- or three-
dimensional in plasma experiments where a magnetic
field restricts the particle motion to one dimension,
forcing the plasma to behave as an unmagnetized one-
dimensional plasma. Effects of a magnetic fields other
than the one-dimensionality are not taken into account
in this theory.

In plasmas where the ion distribution function is com-
posed of more than one component, so that it can be
written as a sum of two or more simple pole expansions,
acoustic-like weakly damped modes can appear on the
ion acoustic time scale7. This modes also affect the fluc-
tuation spectrum, and for an example of a distribution
with two components that have the same centre veloc-
ity but different temperatures it is seen as a broadening
of the ion acoustic branch of the fluctuations. For some
parameters the two distinct modes are seen in the spec-
tral density. If the two components have different centre
velocities the damping can be decreased7. This will af-
fect the fluctuation spectra, and such fluctuations can be
studied with the method described here. Likewise the
simple pole distributions are suitable for the study of
electron acoustic waves and fluctuations that appear in
plasmas with two electron temperatures.

Both the electron and the ion distributions influence
the fluctuations even at ion acoustic frequencies. Thus
measurements of both the electron and ion distribution
functions will be needed in order to compare experimen-
tal and theoretical results. With laser induced fluores-
cence techniques fluctuations resolved in both frequency
and particle velocity can be measured, and hence a de-
sired continuation of existing fluctuation calculation the-
ories would be to address fluctuations of the perturbed
distribution function f (1)(k, ω, v).
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APPENDIX A: RELATIONSHIP BETWEEN
DENSITY AND ELECTRIC FIELD

Although the relationship between the density and the
electric field is well known we derive it here for a plasma
with a simple pole distribution. We will assume that the
plasma potential varies slowly, so that it is stationary on
the electron time scale. Hence the perturbed density n1

is the ion density and it is obtained correctly only for low
frequencies (ω � ωpe).

When a distribution function that is known at one
point in space changes under the influence of conserva-
tive forces the distribution at other points can be ob-
tained by a mapping procedure. The poles and residues
of the electron distribution function at a point where the
electrostatic potential is φ is6 bi,e(φ) =

√
b2i,e(0) + 2eφ

me
, =bi,e(φ) > 0

ai,e(φ) = ai,e(0) · bi,e(0)
bi,e(φ)

. (A1)

This assumes that no part of the distribution is lost out
of the system, which is an assumption that holds au-
tomatically since we are Fourier-transforming in space
considering an infinite system where f0 is the same ev-
erywhere.

With the aid of Eq. (A1) the electron density can be
mapped.

ne = n02πi
∑
bi,e∈U

ai,e

(
1 +

2eφ
meb2i,e

)−1/2

(A2)

For small perturbations |2eφ/me| � |bi,e|2 the density
can be approximated by

ne = n02πi
∑
bi,e∈U

ai,e

(
1− eφ

meb2i,e

)
(A3)

Hence the charge density is

ρ = en1 + en0 − en02πi
∑
bi,e∈U

ai,e

(
1− eφ

meb2i,e

)
(A4)

which together with Poisson’s equation ρ = ε0k
2φ yields

ε0k
2

e
φ = n1 + n0 − n0 + n0φ2πi

∑
bi,e∈U

ai,e
b2i,e

. (A5)

Observing that the Debye length is given by7 λ−2
De =

ω2
pe2πi

∑
bi,e∈U

ai,e
b2i,e

we have

E = ikφ = ik
n1e

ε0

1
k2 + 1/λ2

De

. (A6)

The density perturbation can thus be found from the
electric field

n1 = −i ε0
e

1
k

(
k2 +

1
λ2
De

)
E (A7)
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