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Abstract
Plasma structures, here typified by the term ‘plasmoids’, in the solar wind
impacting on the magnetopause, i.e. the boundary between the solar wind
and the Earth’s magnetosphere, can penetrate this boundary and be injected
into the magnetosphere. This can happen either by expulsion of the magnetic
field from the structure and subsequent diffusion of the magnetic field into
the structure or by the formation of a polarization electric field that lets the
plasma structure E × B-drift into the earth’s magnetic field. In both cases a
collisionless resistivity is required at some stage of the process. While magnetic
expulsion requires electromagnetic models for its description, polarization can
be modelled electrostatically and both processes can be, and have been, studied
in laboratory experiments.

We present three-dimensional electrostatic particle-in-cell simulations that
reproduce large-amplitude waves, in the lower-hybrid range, that have been
observed in laboratory experiments. Lower-hybrid waves have also been
seen at the magnetopause of the earth. We consider the implications for
spacecraft-based studies of magnetopause penetration, and suggest that the
search for penetrating plasma structures should emphasize cases in which
the interplanetary magnetic field is oriented northwards, as this configuration
is less likely for reconnection. The application of theoretical predictions
to the magnetopause environment shows that a plasma structure penetrating
via polarization needs to be small, i.e. less than 10–100 km wide for typical
parameters, and that wave processes at the magnetopause are needed to create
such small structures. A larger structure can penetrate by means of magnetic
expulsion.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

In the late 1970s Lemaire suggested that inhomogeneities in the solar wind can
penetrate the magnetopause as plasma filaments through a process called impulsive
penetration [1]. Rocket [2] and satellite [3, 4] based measurements have shown evidence
of magnetosheath plasma inside the magnetosphere. In the laboratory, similar cross field
transport has been studied by letting a flowing plasma both impact and penetrate a magnetic
barrier [5–8].

Impulsive penetration has been studied numerically in one and two dimensions using
ideal, resistive and Hall MHD and particle-in-cell and hybrid simulations. A review of
these can be found in [9]. More recently two-dimensional Vlasov simulations [10] and two-
dimensional [8] and three-dimensional [11] electrostatic particle-in-cell simulations have been
published.

As a plasmoid enters a transverse magnetic field, ions and electrons gyrate in opposite
directions and, thereby, a polarization electric field E = −v × B is set up, which will enable
the plasma to continue moving with its initial velocity by means of an E × B-drift. The
energy of the electric field must come from the kinetic energy of the plasma and theoretical
results predicted that the condition WK � WE is required for penetration via self-polarization,
where WK = 1

2n0miv
2
0 is the kinetic energy density of the plasma and WE = 1

2ε0(v0B⊥)2

is the energy density of the polarization electric field [12]. Here n0 is the plasma density,
mi the ion mass and v0 the bulk velocity of the plasma. It was later shown that, for
quasi-neutrality to be maintained, WK/WE � √

mi/me is required [13]. It was found
experimentally that unless WK/WE > 10

√
mi/me, penetration is prevented [6]. A recent

series of experiments revealed lower-hybrid wave-driven electron transport perpendicular to
both B and v0 [7,8]. These experiments have been modelled using particle-in-cell simulations
[8, 11]. Lower-hybrid waves have also been observed at the magnetopause by the Cluster
spacecraft [14].

Brenning et al [15] suggested an analytical model for the non-linear magnetic diffusion,
and proposed that experiments and observations can be classified by dividing the parameter
space into three regions corresponding to three different outcomes of a penetration experiment.
This parameter space is spanned by the kinetic beta βk = WK/WB, and the quantity

� = w

rgi
K

√
βith, (1)

which we shall call the penetrability parameter. Here w is the width of the plasmoid, rgi =
miv0/(eB⊥) the ion gyro-radius, WB = B2

⊥/(2µ0) the magnetic energy, βith = 1
2n0miv

2
ith/WB

the ion thermal beta and K = 2.3 is an empirically determined constant. The three regions
are [15]

(i) Expulsion. A plasma structure can penetrate a magnetic barrier by expelling the magnetic
field if βk > 1 and � > 1/

√
βk.

(ii) Self-polarization. A plasma structure can penetrate a magnetic barrier by convection in a
polarization electric field if � <

√
βk for βk < 1 and � < 1/

√
βk for βk > 1.

(iii) Rejection. The plasma cannot penetrate the magnetic barrier if βk < 1 and � >
√

βk.

The requirements on computer simulations are quite different in different regions of βk − �

space. While, for example, electrostatic particle-in-cell simulations can be used to model the
self-polarization regime, electromagnetic simulations are required to model the expulsion
regime. Higher values of the penetrability parameter are associated with either a larger
plasmoid width or a smaller gyro-radius, both of which demand a higher number of grid
points. Similarly, the requirements on laboratory experiments are quite different in the different
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Figure 1. Schematic of the simulation setup showing the simulation box, the initial plasma and
the magnetic field configuration.

parameter regimes. To verify the inequalities and to gain a more complete understanding of the
impulsive penetration process, one would need to conduct a series of laboratory and computer
experiments, where all three regions of βk −� space are sampled and the boundaries between
them are studied in some detail.

The boundary between the expulsion and self-polarization regimes is gradual and was
studied experimentally in [15]. In this paper, we extend the three-dimensional particle-in-
cell simulations of Hurtig et al [11] and present the results of two simulation cases in the
self-polarization regime. We show that waves in the lower-hybrid frequency range appear
in this regime and how the difference in density between the two cases influence the wave
properties and penetrability. Like the previous simulations [11], the simulations presented
here are primarily designed to model the laboratory experiments. We discuss the implications
the results have for studies of the penetration process at the magnetopause, and the applicability
of different theoretical models to the laboratory and space situations.

2. Simulation model

We have used a three-dimensional electrostatic particle-in-cell code with a moving grid and
open boundaries [11]. The use of open boundary conditions means that when the charge of
the particles has been assigned to the grid an extra step is inserted where the potential on the
boundaries of the simulation box is calculated under the assumption that the space between
these boundaries and infinity is empty. Poisson’s equation is then solved using this potential
as a Dirichlet boundary condition. The moving grid makes the computations more efficient by
allowing us to solve Poisson’s equation only in the region near the plasma cylinder and not in
the empty space in front of and behind it.

A schematic of the simulation geometry is shown in figure 1. We simulate a cylindrical
plasma with initial density n0 moving with initial velocity v0 in the z-direction. The simulation
box also moves with the same velocity. At the start of the simulation, the plasma coexists with a
horizontal magnetic field. The travelling plasmoid passes through a transition region and enters
a region characterized by a magnetic field that is directed at a 45◦ angle from the horizontal.
The magnetic field is given by

B = B0

((
1

1 + e(z−zT)/δ
− 1

)
ŷ + ẑ

)
, (2)
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Table 1. Parameters at the magnetopause region [14, 16], the two simulations presented here, and
the experiments [11].

Parameter Magnetopause [14, 16] Sim. I Sim. II Exp. [11]

v0 (km s−1) 100–200 300 300 300
n0 (m−3) ≈2 × 107 1015 1016 1018

B⊥ (T) (10–30) × 10−9 0.05 0.05 0.015
mi/me 1836 92 92 1836

βk = WK/WB 0.5–17 8 × 10−5 8 × 10−4 0.8
WK/WE (0.4–4) × 107 76 756 8 × 105

1

10

WK

WE

√
me

mi
(1–9) × 104 0.79 7.9 2 × 103

� = w

rgi
K

√
βith 1.3 × 10−3 4.2 × 10−3 0.1

fpe 40 kHz 63 MHz 200 MHz 9 GHz
fce (0.3–0.8) kHz 70 MHz 70 MHz 0.4 GHz
fpi 0.9 kHz 7 MHz 20 MHz 0.2 GHz
flh (7–20) Hz 5 MHz 7 MHz 10 MHz

where ŷ and ẑ are unit vectors in the y- and z-directions, respectively. For this simulation,
B0 = 0.05 T is the horizontal component of the magnetic field, zT = 165 mm is the
z-coordinate of the centre of the transition region and δ = 20 mm is a constant that determines
how sharp the magnetic field gradient will be.

Initially the plasma is uniform within a cylinder of length L = 110 mm and radius
R = 12.5 mm. The plasmoid width w = 2R = 25 mm is thus smaller than the ion gyro-
radius rgi = miv0/(eB0) = 63 mm but larger than the electron gyro-radius rge = 0.68 mm.
The plasma cylinder is centred at (x0, y0, z0) = (22.5, 32.5, 80) mm. The size of the simulation
box is (Lx, Ly, Lz) = (45, 65, 150) mm. In this paper we present two simulation runs. In
simulation I, the initial density is 1015 m−3 and in simulation II, n0 = 1016 m−3. We simulate
560 ns in both cases with a time step of �t = 0.8 ns in simulation I and �t = 0.4 ns in
simulation II. Some important parameters for the two simulation runs are shown in table 1
together with typical parameters from the laboratory [11] and the magnetopause [14, 16].

In the experiments, lower-hybrid waves were observed and these were interpreted as
resulting from a modified two-stream instability [7]. One would then have a maximum
growth rate of γmax = ωlh/2 at wave number kmax = √

3ωlh/vei [17], where ωlh = 2πflh =
2πfpi

√
1 + f 2

pe/f
2
ce is the lower-hybrid frequency, and vei = i/(ne) is the relative electron–ion

drift speed associated with the current across B that drives the instability. In the experiment
of Hurtig et al [7, 8], vei was typically 105 m s−1, about one-third of the plasma speed,
v0 = 3 × 105 m s−1. Assuming the same velocity ratio, and the parameters used in the
simulations that are reported here, the wavelengths of maximum growth would be 1.2 cm and
0.8 cm in simulations I and II, respectively.

The frequency for the fastest growing mode would be
√

3flh/2. Thus, with parameters
from table 1, we can fit several wavelengths inside the simulated plasma, and the simulation is
run for a few growth times and wave periods. The experimental parameters, in the rightmost
column of table 1, would require both a spatial and a temporal resolution that would be
computationally prohibitive. With the parameters that we do use, we can, however, demonstrate
the ability to study the wave growth by simulating a parameter regime that previously had
not been simulated. The present simulations have been motivated by a renewed effort in
laboratory experiments, the advances in computer performance, and by spacecraft missions
utilizing simultaneous measurements at several points in space.
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Figure 2. Slices of the electron density in the xy-plane (left column) and the yz-plane (right column)
for the times t = 80, 240, 400 and 560 ns in simulation I. These times correspond to tflh = 0.39,
1.2, 2.0, and 2.7.

3. Simulation results

Figure 2 shows the plasma density of simulation I in the xy-plane (left column) and the yz-plane
(right column) for the times t = 80, 240, 400 and 560 ns from top to bottom. Figure 3 shows
the same thing for simulation II. The coordinate perpendicular to the plane shown in each panel
is at the centre of the original plasma cylinder.

As the plasma enters the transverse field region, it is compressed in the x-direction, which
is perpendicular both to its motion and to the magnetic field, in agreement with laboratory
experiments [5, 11]. The compression was explained by Hurtig et al [11] as a result of the
j × B-force arising from the diamagnetic current. Density structures that are aligned with the
B-field appear in and after the transition region. Comparing the lower panels of figures 2 and 3,
one can see that, at the end of the run, the lower-density plasma of simulation I has slowed
down more, and penetrated less, than the higher-density plasma of simulation II.

The upper panel of figure 4 shows the density in simulation I as it would be measured by
a probe located at (x, y, z) = (25, 32.5, 210) mm. The x-coordinate of the probe is shifted
2.5 mm from the centre of the plasma (x0 = 22.5 mm) towards the high potential side. The
lower panel shows the power spectral density Pnn of np−〈np〉, where np is the density measured
by the probe and 〈np〉 is the mean value of the density during the time shown in the upper
panel. The power spectral density was computed using Welch’s method which, for example, is
described in [18], with a Hanning window and 65% overlap. The corresponding quantities in
simulation II are shown in figure 5. The strong wave activity can be seen in the probe signal near
the end of the trace. This is similar to what was observed experimentally by Hurtig et al [7].
The wave frequency is in the lower-hybrid range in both simulations. In simulation I, where
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Figure 3. Slices of the electron density in the xy-plane (left column) and the yz-plane (right column)
for the times t = 80, 240, 400 and 560 ns in simulation II. These times correspond to tflh = 0.55,
1.7, 2.8 and 3.9.
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Figure 4. The upper panel shows the signal from a density-measuring virtual probe located at
x = 25 mm, y = 32.5 mm, z = 210 mm in simulation I. The probe location is 2.5 mm to the high
potential side of the centre of the plasma. The lower panel shows the power spectral density of this
signal after subtraction of its mean value. The lower-hybrid frequency, the ion and electron plasma
frequencies, and electron cyclotron frequency are marked using arrows in the lower panel.
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Figure 5. The upper panel shows the signal from a density-measuring virtual probe located at
x = 25 mm, y = 32.5 mm, z = 210 mm in simulation II. The probe location is 2.5 mm to the high
potential side of the centre of the plasma. The lower panel shows the power spectral density of this
signal after subtraction of its mean value. The lower-hybrid frequency, the ion and electron plasma
frequencies, and electron cyclotron frequency are marked using arrows in the lower panel.

the density is lower, the lower-hybrid frequency cannot be distinguished from the ion plasma
frequency. In simulation I, the density is 100% modulated, all the way down to zero, and, in
simulation II, the oscillation amplitude is a large fraction of the background density. This is
consistent with the experimental findings [7]. It should be noted that the density structures in
figures 4 and 5 correspond to observations in the lab frame. These frequencies are Doppler
up-shifted from those that would be seen in the plasma rest frame. An exact identification with
the lower-hybrid frequency is therefore not expected. The central finding is that the oscillations
are in the lower-hybrid range.

Space–time diagrams of the plasma density for the x- and y-coordinates are shown in
figure 6 for simulation I and in figure 7 for simulation II. There are waves propagating in the
y-direction with a phase speed of 250–300 km s−1 in both simulations, that is to say, at about
the bulk speed of the plasma. In z–t-diagrams (not shown) one can see that the phase speed in
the z-direction is in the same range as that in the y-direction.

As determined from the data in figures 6 and 7 and from the lower right-hand panels in
figures 2 and 3, the dominating wavelength in simulation I is λy ≈ 1.3 cm and λz ≈ 1.5 cm,
and, in simulation II, λy ≈ 1.4 cm and λz ≈ 0.7 cm. Careful examination of the right-hand
panel of figure 7 indicates the presence of smaller amplitude structure with λy in the vicinity of
the 0.7 cm determined for λz. This means that, in simulation II, there is a spectrum of several
wavelengths, whereas, in simulation I, there is one clearly dominating wavelength. This can
also be discerned from a comparison of the lower right (t = 560 ns) panels of figures 2 and 3.

4. Implications for space studies

Whether or not a plasmoid will penetrate the magnetopause on impact depends on its
values of βk and � [15]. The nature of the penetration also depends on these quantities.
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Figure 6. x–t- and y–t-diagrams for the density at z = 0.21 m in simulation I.

Figure 7. x–t- and y–t-diagrams for the density at z = 0.21 m in simulation II.

A multi-spacecraft approach to measure the size of the plasmoids is necessary for our
understanding of the physics involved because the width of the plasmoid is one of the quantities
that determine what type of model can describe the penetration.

An estimate of the upper limit to the width of a plasmoid that can penetrate through self-
polarization can be made using the inequalities in section 1 [15], parameters from table 1 and
kBTi = 200 eV [16]. For v0 = 100 km s−1 and B = 30 nT this leads to w ≈ 8 km ≈ 0.2rgi.
For v0 = 200 km s−1 and B = 10 nT we obtain w ≈ 93 km ≈ 0.4rgi, where rgi is the drift
speed gyro-radius. In the magnetosheath, on the other hand, they gyrate at their thermal speed,
leading to w ≈ 0.6rgi before penetration, which must still be considered as small. A structure
that is small enough to penetrate the magnetopause through self-polarization would need to be
created at or near the magnetopause, since it otherwise would soon disperse and grow to sizes
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of at least one gyro-diameter. The sideways contraction, by a factor 3–5, seen in the left-hand
panels of figures 2 and 3 would simplify penetration of clouds that are initially too wide. Also,
as we have seen in section 3, lower-hybrid waves can create small scale density structures
and lower-hybrid waves have been observed at the magnetopause [14]. The understanding of
the physics of magnetopause penetration in the self-polarization regime thus requires not only
a search for small plasmoids, but also that wave processes at the magnetopause are studied.
Unfortunately, we are unable to reach the βk of the magnetopause in our simulations as can
be seen in table 1. However, waves on the lower-hybrid frequency scale are seen both in the
simulations presented here and in laboratory experiments. These simulations can therefore
model wave phenomena in the electrostatic regime of the experiments. The βk parameter of
the laboratory experiment is in the range of values seen at the magnetopause, and therefore
wave phenomena of the kind reported here are expected at the magnetopause for the small
plasmoid conditions that are described above.

Lindberg [5] pointed out that the polarization field builds up a potential which the ions
must overcome. He found that this sets an upper limit to the width of the penetrating plasmoid:

w � 1

2

miv0

eBy

= 1

2
rgi. (3)

Here By = B⊥ downstream and By = 0 upstream of the barrier. Since the solar wind is
magnetized, this condition is modified at the magnetopause, where the upstream By may
differ from zero. With the experimental coordinate system used throughout this paper, i.e. the
downstream magnetic field Bd = Bydŷ, with the upstream field Bu = Bxux̂ + Byuŷ + Bzuẑ, and
with v0 = v0ẑ, we have

ew(−v0 × Bd − (−v0 × Bu)) · x̂ = ewv0(Byd − Byu) � miv
2
0

2
. (4)

From (4) we obtain the following plasmoid-width condition.

w � 1

2
rgi

Byd

Byd − Byu
. (5)

If Byu = Byd, there is no barrier and, if Byu = 0, we retain Lindberg’s limit. If Byu and Byd are
anti-parallel, the potential that must be overcome by the ions will be higher and the restriction
on w more severe. It has been shown [15] that (3) is not an absolute requirement since wave
processes can act so that the ions need not lose all their kinetic energy while entering the
high potential region: on an average, the streaks with high density in the wave structure are
associated with a wave electric field along the stream direction, and the voids in between with
a wave field in the opposite direction. Even though conditions (3) and hence (5) need not
necessarily be fulfilled, the ions must climb a potential hill to reach the high potential side and
the direction of the upstream magnetic field will influence this process.

As can be seen from (4) and (5), the conditions are more favourable for penetration when
the magnetic fields on both sides of the barrier are parallel. For penetration of the magnetopause
this situation occurs when the interplanetary magnetic field (IMF) has a northward component.
By searching space data, for example data from the Cluster spacecraft, from periods with
a northward IMF penetrating plasmoids are more likely to be found. The magnetic field
configuration with a northward IMF is also less favourable for reconnection, in the absence
of anti-parallel magnetic fields, and that will make the identification of impulsive penetration
events easier.
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5. Discussion

In impulsive penetration, plasma can penetrate a magnetic barrier without magnetic
reconnection, i.e. without rearranging of the magnetic field topology. Both processes require
collisionless resistivity both to enable electron diffusion and to dissipate magnetic energy.
Experiments have shown that waves in the lower-hybrid frequency range can provide the
required resistivity [8]. The simulations presented here reproduce these waves but, due to
computational limitations, we can accommodate only a couple of wave periods near the end
of the simulations (see figures 4 and 5) and we do not have good enough statistics to reliably
compute the resistivity.

There are two processes: impulsive penetration and reconnection. They both require
a collisionless resistivity, and we have seen that this can be provided by waves. What
distinguishes the two? One may speculate that the microphysics is similar in the two cases and
that reconnection occurs when the magnetic field topology is such that it can be rearranged by
dissipation of magnetic energy in a diffusion region. At the magnetopause this is most likely
during periods with southward IMF. During northward IMF the magnetic field topology cannot
be rearranged in this way and impulsive penetration happens instead. Laboratory experiments
can be used to study both the regimes of self-polarization and of magnetic expulsion in
considerable detail [8]. Only one experiment [6] has been made, so far, of the transition
to the rejection regime, which, after all, should be the normal state at the magnetopause. We
have presented three-dimensional electrostatic simulations. These are applicable to the self-
polarization regime, and shall be used in future studies of the transition to the rejection regime.
Thus they can be used to model a subset of the laboratory experiments and penetration of the
magnetopause for plasmoids that are small enough to penetrate through self-polarization. To
accurately model the magnetic expulsion regime, one would need to rely on electromagnetic
simulations. Future work should include a combination of space, laboratory and simulation
studies. The relationship between impulsive penetration and magnetic reconnection can be
studied by comparing these results with results from reconnection experiments with colliding
magnetized plasmas (see review by Yamada [19]). Space observations can be used both to find
penetrating plasmoids and to measure their size. Multi-point measurements, for example with
the Cluster spacecraft, would be crucial in this context. Detailed observations of waves at the
magnetopause that can be compared with results from the laboratory and computer simulations
would greatly increase our understanding of the processes involved.
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